Decision Aid Methodologies In Transportation Lecture 5: Graph and Network

Graph

and

Networks

Shadi SHARIF AZADEH
Transport and Mobility Laboratory TRANSP-OR
École Polytechnique Fédérale de Lausanne EPFL

Branch and Bound

Pruned by optimality

Best Bound and Best Solution?

The relaxation of integer programming problem

Three reasons that allow us to prune the tree and thus enumerate a large number of solutions

1) Pruning by optimality
2) Pruning by bound
3) Pruning by infeasibility

Branch and bound- example

$$
\begin{array}{ll}
\text { Maximize } & z=5 y_{1}-2 y_{2} \\
\text { subject to } & -y_{1}+2 y_{2} \leq 5 \\
& 3 y_{1}+2 y_{2} \leq 19 \\
& y_{1}+3 y_{2} \geq 9 \\
& y_{1}, y_{2} \geq 0 \text { and integer }
\end{array}
$$

Integer Solution?

- No

Partitioning strategy?

- Variable Y_{1} ?
- Variable Y_{2} ?
- Sub problems?

Branch and bound- example

Branch on Y1
Solution $Y_{1}=(39 / 7)$
Examine two sub problems
$Y_{1} \geq 6$
$Y_{1} \leq 5$

- Integer Solution?
- No
- Partitioning strategy?
$\$$ Variable Y_{1}
- Variable Y_{2}

(PPI

Branch and bound- example

Branch on Y_{2}
Solution $Y_{2}=(8 / 7)$
Examine two sub problems

$$
\begin{aligned}
& Y_{2} \geq 2 \\
& Y_{2} \leq 1
\end{aligned}
$$

- Integer Solution?
- Yes

Branch and bound- tree

Branch and bound- Practical tips

1) What relaxation should be used to provide upper bounds

Choose the model with best relaxation bound
2) How should the feasible region be separated into smaller regions

Which variable to branch
How to partition
How many sub problems
3) In what order should the sub problems be examined

Node selection
Which sub-problem should be examined first

Branch and bound- Practical tips

How should the feasible region be separated into smaller regions

When an LP solution contains several fractional values for integer variables, the decision about which integer variable should be chosen to branch is needed. The following rules are commonly used for choosing a branching variable:

1. Variable with fractional value closest to 0.5
2. Variable with highest impact on the objective function
3. Variable with the smallest index

Branch and bound- Practical tips

1. Variable with fractional value closest to 0.5

$$
X+Y+Z=1
$$

LP Solution: $X=0.9, Y=0.05, Z=0.05$
Sub-Problems?
3 nodes: $X=1, Y=1, Z=1$
2 nodes: $X=1, X=0$
Which one is better?

Branch and bound- Practical tips

2. Variable with highest impact on the objective function Max $100 X+10 Y$

LP Solution: $X=4.3, Y=2.4$
Partition:
Case 1: $X>4$ and $X \leq 4$
Case 2: $X \geq 5$ and $X \leq 4$
Which one is better?

Branch and bound- Practical tips

3. Variable with the smallest index

$$
\operatorname{Max} \sum_{i=1}^{100} x_{i}+\sum_{i=1}^{10} y_{i}
$$

Partition on x or y ?

Branch and bound- Practical tips

which unpruned node to explore first

The most commonly used search strategies include
1- depth-first (last-in-first-out)
first solve the most recently generated sub problem
\rightarrow quickly obtain a primal feasible integer solution (solving by dual simplex)

2- best-bound-first (best upper bound)

branch on the active node with highest value of the objective function (for a maximization problem and vice-versa for the minimization problem)
\rightarrow The goal is to minimize the total number of nodes evaluated in the $B \& B$ tree

Branch and bound- Practical tips

Performance of these branching rules depends on the problem structure. In practice, a compromise between the two is usually adopted. That is , apply the depth-first strategy first to get one feasible integer solution, followed by a mixture of both strategies.

$$
\begin{array}{ll}
\text { Maximize } & z=-y_{1}+2 y_{2}+y_{3}+2 x_{1} \\
\text { subject to } & y_{1}+y_{2}-y_{3}+3 x_{1} \leq 7 \\
& y_{2}+3 y_{3}-x_{1} \leq 5 \\
& 3 y_{1}+x_{1} \geq 2 \\
& y_{1}, y_{2}, y_{3} \geq 0 \text { and integer } \\
& x_{1} \geq 0
\end{array}
$$

Branch and bound- Practical tips

Branch and bound- Practical tips

COLE POLYTECHNIQUE
fedikale de lauskane

Graph Theory-Shortest path problem

For all algorithm and notations $G=(V, A)$ represents the graph in which V is the set of nodes and A is the set of arcs.

Number of nodes $=n$ in our example graph we have 6 nodes
Number of arcs= m in our example graph we have 9 arcs
We consider $V^{+(i)}$ as the set of imediate successor of node i and $V^{-(i)}$ as the set of immediate predecessor nodes
In our example graph $V^{+(3)}=\{5,4\}$ and $V^{-(3)}=\{1,2\}$

Graph Theory-Shortest path problem

A chain of a graph G is an alternating sequence of vertices $x_{0}, x_{1}, \cdots, x_{n}$ beginning and ending with vertices in which each edge is incident with the two vertices immediately preceding and following it. If the first and the last nodes are the same we have the cycle.

Graph \rightarrow Directed Graph
Chain \rightarrow Path
Cycle \rightarrow Directed cycle
Path $=\{1,3,4,6\}$
Directed cycle=\{4,6,5,4\}

Graph Theory-Shortest path problem

Mathematical model:

$$
\begin{aligned}
& Z=\min \sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \sum_{k \in V^{+i)}} x_{i k}-\sum_{k \in V^{(i)}} x_{k i}=1 \quad i=s \\
& \sum_{k \in V^{+i)}} x_{i k}-\sum_{k \in V^{-(i)}} x_{k i}=0 \quad i \in V \backslash\{s, t\} \\
& \sum_{k \in V^{+i)}} x_{i k}-\sum_{k \in V^{-i}} x_{k i}=-1 \quad i=t \\
& x_{i j} \geq 0 \quad \forall(i, j) \in A
\end{aligned}
$$

Unimodality property

Graph Theory-Shortest path problem

Dijkstra

Hypothesis: all arcs has positive value
Find minimum distance from source to sink.
k is the index of a node.
(1) $\bar{S}:=\{2, ., n\} ; \pi(1)=0$; for all $k \neq 1$ do $\quad \pi(\mathrm{k})=\left\{\begin{array}{cc}d_{1 k} & \text { if } k \in V^{+}(1) \\ \infty & \text { otherwise }\end{array}\right.$
(2) determine k such as $\pi(\mathrm{k}) \leq \pi(y)$ for all y in \bar{S} and consider $\bar{S}:=\bar{S}-\{\mathrm{k}\}$ if $\bar{S}=\varnothing \mathrm{STOP}$
(3) for all y in $\bar{S} \cap V^{+}(\mathrm{k})$ do $\pi(y):=\min \left\{\pi(y), \pi(\mathrm{k})+d_{k y}\right\}$ and return to (2)

Graph Theory-Shortest path problem

(1) $\bar{S}:=\{2, . ., n\} ; \pi(1)=0$; for all $k \neq 1$ do $\quad \pi(\mathrm{k})=\left\{\begin{array}{cc}d_{1 k} & \text { if } k \in V^{+}(1) \\ \infty & \text { otherwise }\end{array}\right.$
(2) determine k such as $\pi(\mathrm{k}) \leq \pi(y)$ for all y in \bar{S} and consider $\bar{S}:=\bar{S}-\{\mathrm{k}\}$

$$
\text { if } \bar{S}=\varnothing \text { STOP }
$$

(3) for all y in $\bar{S} \cap V^{+}(\mathrm{k})$ do $\pi(y):=\min \left\{\pi(y), \pi(\mathrm{k})+d_{k y}\right\}$ and return to (2)

Initialize:
$\bar{S}=\{2,3,4,5,6\}$
$\pi(1)=0$
Iteration:
It1. $\pi(2)=6, \pi(3)=\min \{4, \infty\}, \bar{S}=\{3,4,5,6\}$
It2. $\pi(3)=\min \{4,8\}, \pi(4)=\min \{8, \infty\}, \bar{S}=\{4,5,6\}$

It3. $\pi(4)=\min \{8,5, \infty\}, \pi(5)=\{6\}, \bar{S}=\{4,6\}$
It4. $\pi(4)=\min \{8,5,7\}, \pi(6)=\{9, \infty\}, \bar{S}=\{6\}$
It5. $\pi(6)=\{9,12\}=9$

Graph Theory-Maximum flow problem

How many units of flow can be transferred from 1 to 6 ?

Find the maximum flow from a source to sink and repeat it until no flow exists.
One way is to iteratively find the paths between source to the sink that can simultaneously transfer the flow and calculate the maximum flow that these paths can handle. In the above case, there are 3 paths from 1 to 6 ; however, only two of them can transfer the flow (overall 3 units). Does this approach give us the optimal solution?

Graph Theory-Maximum flow problem

No, it may not find the maximum flow

Units transferred:
(PP)

Graph Theory-Maximum flow problem

Some types of graphs:
For a graph $G(V, A)$, each arc has a maximum capacity (Ca) and the amount of the flow on arc a is denoted by $f(a)$. The total flow passing from source to sink in the graph is presented by $G(f)$
Residual graph ($\left.G^{*}(f)\right)$:
Based on the flow that passes through the graph node we can build a residual graph.

- Nodes: It has the same number of nodes as graph G
- Arcs: for each arc $a=(x, y)$ in G we generate one arc on G^{*} based on the following possibilities:
- If $\mathrm{f}(\mathrm{a})<\mathrm{Ca}$: we add an arc (x, y) with the capacity of Ca-f(a)
- If $f(a)=C a$: we add an arc from y to x with the capacity of Ca

Graph Theory-Maximum flow problem

Level graph (\bar{G}) :

A graph is called Level, if we partition its nodes into two consecutive sub-sets of nodes, arcs in the current subsets must be connected to the nodes in another subset.
V_{i} and V_{i+1} are two concecutive subsets
M is a mega node of first subset
$\omega^{+}(M)$: represets arcs that are going out from mega node M

Algorithm:
(1) $V_{1}:=\{\mathrm{s}\} ; \mathrm{M}:=\{\mathrm{s}\} ; \mathrm{i}:=1$;
(2) if $\omega^{+}(M)$ is empty then STOP otherwise
add in $\overline{\mathrm{G}}$ all the arcs of $\omega^{+}(\mathrm{M})$
$\mathrm{V}_{i+1}=\left\{\mathrm{x} \mid \exists(\mathrm{y}, \mathrm{x}) \in \omega^{+}(\mathrm{M})\right\}$
$\mathrm{M}:=\mathrm{M} \cup \mathrm{V}_{i+1}$
$\mathrm{i}:=\mathrm{i}+1$ and GO TO (2)

Graph Theory-Maximum flow problem

Graph Theory-Maximum flow problem

Dinic Algorithm:
(1) Determine a feasible flow f for the Graph named $\mathrm{G}(\mathrm{f})$.

If the flow is zero then we have $\mathrm{G}(0)$.
(2) Build the residual graph $\mathrm{G}^{*}(\mathrm{f})$
(3) Construct the level graph of $\mathrm{G}^{*}(\mathrm{f})$ named $\overline{\mathrm{G}^{*}(\mathrm{f})}$.
(4) Find blocking flow from source to sink in Graph $\overline{\mathrm{G}^{*}(\mathrm{f})}$.
(5) If there is a blocking flow from source to sink then

Add all the blocking flows to $G(f)$. Now we have $G\left(f^{\prime}\right)$ in which $f^{\prime}>f$. Replace $G\left(f^{\prime}\right)$ by $G(f)$ and GOTO 2
Otherwise the solution is optimal
Example: Find the maximum flow for the following graph

Graph Theory-Maximum flow problem

(a)
(d)
(f)
(t)
(s) (b)
\geqslant TRANSP-OR

Graph Theory-Minimum Cost Flow

Let $G=(N, A)$ be a directed network with a cost $C_{i, j}$ and a maximum capacity $U_{i, j}$ associated with every arc $(i, j) \in A$. We associate with each node $i \in N$ a number $b(i)$ which indicates its supply or demand depending on whether $b(i)>0$ or $b(i)<0$. The minimum cost flow problem can be stated as follows:

$$
\begin{aligned}
& \operatorname{Min} z(x)=\sum_{(i, j) \in A} c_{i j} x_{i j} \\
& \sum_{i \in N} x_{i j}-\sum_{\substack{k \in N \\
l_{i j} \leq x_{i j} \leq u_{i j} \in A}} x_{j k}=b_{j} \text { for all } j \in N
\end{aligned}
$$

Each node is:
Flow generation $\quad b(i)<0$
Flow consumption $b(i)>0$

Flow conservation $b(i)=0$

Graph Theory-Minimum Cost Flow

(1) Determine a feasible flow f if no flow exists then STOP
(2) if $\mathrm{G}^{*}(\mathrm{f})$ does not have a negative cycle then the current flow obtains minimum cost if not C is a directed negative cycle and $\Delta=\min _{(x, y) \in C} \mathrm{c}_{(x, y)}^{*}$. for all $\operatorname{arcs}(\mathrm{x}, \mathrm{y})$ in negative cost cycle (C) do

- increase the flow Δ unit on (x, y) if $\operatorname{arc}(\mathrm{x}, \mathrm{y})$ exists in G
- decrease the flow Δ unit on (y, x) if $\operatorname{arc}(y, x)$ exists in G GOTO2

Graph Theory-Minimum Cost Flow

Find a feasible flow

Find a negative cycle in G^{*}

Graph Theory-Minimum Cost Flow

Update the flow

Total Cost=21
Update the flow

Find a negative cycle in G*

No negative Cycle the solution is optimal

